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All You Need to Know about Final Value Theorem
linquip.com/blog/final-value-theorem

The final value theorem (FVT) is one theorem utilized to relate frequency domain

expression to the time domain behavior as time approaches infinity.

The Linquip website provides information about a variety of scientific topics. Besides

researchers and those who are interested in general or specific knowledge about these

topics, users and entrepreneurs who are eager to expanding their knowledge of the

working principles and concepts behind industrial equipment and tools can also benefit

from them. The final value theorem is a fundamental mathematical and calculating

concept that is used by some specific industrial devices. You may find it helpful to visit

Linquip’s page entitled “What Is Electrical Power Transmission.”

To get the most out of the Linquip platform and fully utilize its features, you must become

a Linquip Expert. A Linquip expert account lets you demonstrate your expertise in the

field of industrial equipment in a way that is specifically tailored to meet the needs of your

industry. Would you like to be a guest writer on the Linquip website and contribute to the

content of the site? It is possible to publish your content directly on Linquip’s website

through the Guest Posting feature.

Mathematically, if  f(t) in continuous time has Laplace transform F(s) then a final value

theorem establishes situations under which

https://www.linquip.com/blog/final-value-theorem/?preview_id=3924&preview_nonce=bca6c0968c&post_format=standard&_thumbnail_id=3927&preview=true
https://en.wikipedia.org/wiki/Frequency_domain
https://www.linquip.com/industrial-directories/400/electrical-power-transmission
https://www.linquip.com/experts/leaderboard
https://www.linquip.com/blog/user-guest-post


2/4

{ \lim _{ t\to \infty } f(t)=\lim _{ s\, \to \, 0 }{ sF(s) } }limt→∞ f(t)=lims→0 sF(s)

Similarly, if f[k] in discrete time has Z-transform F(z) then a final value theorem

establishes conditions under which

\lim _{ k\to \infty } f[k]=\lim _{ z\to 1 }{ (z-1)F(z) }limk→∞ f[k]=limz→1 (z−1)F(z)

The Abelian final value theorem assumes the time domain of  f(t) (or  f[k]) to calculate

{ \lim _{ s\, \to \, 0 }{ sF(s) } }lims→0 sF(s)

On the other hand, a Tauberian final value theorem makes assumptions about the

frequency-domain of  F(s) to calculate

\lim _{ t\to \infty } f(t)(or{ \lim _{ k\to \infty } f[k] })limt→∞ f(t)(orlimk→∞ f[k])

Deducing \lim _{ t\to \infty } f(t)limt→∞ f(t)

Final value theorems for obtaining  \lim _{t\to \infty }f(t)limt→∞ f(t) have usage in

establishing the long-term stability of a specific system

\lim _{t\to \infty }f(t)limt→∞ f(t)

Standard Final Value Theorem

Suppose that every pole of  F(s) is at the origin or in the open left half plane, and that  F(s)

has at most one pole at the origin. Then

sF(s)\to L\in { R\quad }sF(s)→L∈R

as

{ s\to 0 }s→0

and

{ \lim _{ t\to \infty } f(t)=L }.limt→∞ f(t)=L.

 

Final Value Theorem in Laplace Transform of the Derivative

If f(t) and  f'(t) both have Laplace transforms that exist for all  s>0 , and

\lim _{ t\to \infty } f(t)limt→∞ f(t)

and

{ \lim _{ s\, \to \, 0 }{ sF(s) } }lims→0 sF(s)

exists, then

{ \lim _{ t\to \infty } f(t)=\lim _{ s\, \to \, 0 }{ sF(s) } }.limt→∞ f(t)=lims→0 sF(s).

Note:

 
Both limits must exist in order that the theorem holds. For instance, if

f(t)=\sin (t)f(t)=sin(t)
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then

\lim _{ t\to \infty } f(t)limt→∞ f(t)

does not exist. However,

\lim _{ s\, \to \, 0 }{ sF(s) } =\lim _{ s\, \to \, 0 }{ \frac { s }{ s^{ 2 }+1 } } =0lims→0 

sF(s)=lims→0 s2+1s =0

 

Read More on Linquip

Your Convenient Preventive Maintenance Checklist

Deducing { \lim _{ s\, \to \, 0 }{ sF(s) } }lims→0 sF(s)

Another application of final value theorems for obtaining

 \lim _{s\,\to \,0}{sF(s)} lims→0 sF(s)

In probability and statistics is to find the moments of a random variable.

Final Value Theorem in Laplace Transform of the Derivative

Suppose that all of the conditions below are satisfied:

 
1. f:(0,\infty )\to { C }f:(0,∞)→C is constantly differentiable and both f and  f’ have a

Laplace Transform

 
2.  f’ is completly integrable, that is { \int _{ 0 }^{ \infty } |f'(\tau )|\, d\tau } ∫0∞ ∣f′(τ)∣dτ

is finite

 
3.{ \lim _{ t\to \infty } f(t) }limt→∞ f(t)  is finite

 
Then

{ \lim _{ s\to 0^{ + } } sF(s)=\lim _{ t\to \infty } f(t) }.lims→0+ sF(s)=limt→∞ f(t).

Final Value Theorem for the Mean of a Function

Assume that { f:(0,\infty )\to { C } }f:(0,∞)→C be a continuous and bounded function

such that the following limit exists

{ \lim _{ T\to \infty }{ \frac { 1 }{ T } } \int _{ 0 }^{ T } f(t)\, dt=\alpha \in { C }

}limT→∞ T1 ∫0T f(t)dt=α∈C

Then

{ \lim _{ s\, \to \, 0,\, s>0 }{ sF(s) } =\alpha }.lims→0,s>0 sF(s)=α.

Examples

An Example FVT Is Applicable

https://www.linquip.com/blog/convenient-preventive-maintenance-checklist/
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For instance, for a system described by transfer function

G(s)=\frac { 3 }{ s+4 } ,G(s)=s+43 , and so the impulse response converges to

\lim _{ t\to \infty } g(t)=\lim _{ s\to 0 } \frac { 3s }{ s+4 } =0.limt→∞ g(t)=lims→0 s+43s 

=0.

The system comes to zero after being disturbed by a short impulse. Nevertheless, the

Laplace transform of the unit step response is

H(s)=\frac { 1 }{ s } \frac { 3 }{ s+4 } H(s)=s1 s+43 

Thus the step response converges to

\lim _{ t\to \infty } h(t)=\lim _{ s\to 0 } \frac { s }{ s } \frac { 3 }{ s+4 } =\frac { 3 }{ 4 }

=0.75limt→∞ h(t)=lims→0 ss s+43 =43 =0.75

Thus, a zero-state system will follow an exponential rise to a final value of 0.75.

An Example FVT Is Not Applicable

For a system determined by the transfer function

H(s)=\frac { 16 }{ s^{ 2 }+16 } ,H(s)=s2+1616 ,

the final value theorem seems to predict the final value of the step response to be one and

the final value of the impulse response to be zero. Though, the time-domain limit does not

exist, and so the final value theorem forecasts are not valid.

Both the step response and impulse response oscillate, and (in this special case) the final

value theorem determines the average values where the responses oscillate.

 
There are two analyses performed in Control theory that confirm valid results for the

Final Value Theorem:

 
All non-zero roots in the denominator of H(s) must contain negative real parts.

 
H(s) must not possess more than one pole at the origin.

 
Rule 1 was not satisfied in this case, in that the roots of the denominator are  0+j4

0+j4and  0-j4.0−j4.

 

 

 


