HomeHeat ExchangerTypes of Heat Exchangers: An Introduction to All Essential about Specifications

    Types of Heat Exchangers: An Introduction to All Essential about Specifications

    Here is an article about different types of heat exchangers. In this article, we intend to introduce you to the main categories and subcategories of heat exchangers. To do this, it is better to know how a heat exchanger is and how it is constructed and how it works. So, to begin with, we generally answer the question of “what is a heat exchanger?”. In the following sections, we will see how a heat exchanger is constructed and how it performs. There are many articles on the internet with a lot of information. Some of them are comprehensive some others are not. Linquip tried to gather all the necessary and available pieces of information about this topic for you and retell it in simple language to eliminate the need for you to wander through the vast amount of confusing content. Stay with us until the end to get answers to all your questions about different types of heat exchangers.

    What Is a Heat Exchanger?

    To better understand the types of heat exchangers, it is better to first get acquainted with what they are.

    Heat exchangers are machines produced to transfer heat between two or more fluids such as liquids, vapors, or gases with different temperatures. The heat transferring process based on the type of heat exchanger can be gas to gas, liquid to gas, or liquid to liquid. This exchanging is conducted through a solid separator preventing direct contact of these fluids.

    The suitability and compatibility of a fluid with a heat exchanger relies on the type of heat exchanger being used and the materials used in the construction of the exchanger. Some standard heat exchangers are suitable for most fluids including oil, water, and even Sea Water. For some corrosive fluids such as chlorinated saltwater, refrigerants, and acids, there is a need for other materials such as Stainless Steel and Titanium.

    Types of heat exchangers - Linquip

    Other characteristics, including construction materials, components, parts, a different mechanism for heat transfer, and so on will assist to categorize and classify different types of heat exchangers. These characteristics also help us find which one is more compatible with given applications across a wide range of industries, and general use.

    In the following section, we will talk about how heat exchanger works. The working principle of almost all the heat exchangers is the same. However, the purpose of describing the overall performance of heat exchangers is to familiarize you better with the fact that despite their different designs, they all do the same thing.

    How Does It Work?

    As we mentioned before, there are many different types of heat exchangers and all they do is to transfer and move heat in different processes and situations including space heating, refrigeration and cooling, power stations, chemical plants, and other processes. But how do these machines work?

    Heat exchangers work by transferring heat from one place to another. The combustion produced from the burning natural gas or propane fuel in the furnace enters and travels through the heat exchanger. As the gas makes its way to the exhaust outlet of the furnace, the hot flue gas heats the metal. The hot metal heats the air circulating over the exterior of the heat exchanger. Note that it is only one way of heat exchanging that happens in different types of heat exchangers but it is the whole point in almost all types of heat transfer machines.

    Types of heat exchangers - Linquip

    Heat Exchanger Components and Materials

    In the previous section, we elaborated on how generally a heat exchanger work. And also, we mentioned that different materials and components are used in making a heat exchanger. In this section, we want to make you more familiar with these materials and components.

    There are several types of materials that can be used to construct heat exchangers. The components and materials used depend on what type of heat exchanger we require and for what purpose or goals we need a heat exchanger.

    Shells, tubes, coils, plates, fins, and adiabatic wheels are some of the most common components used to construct heat exchangers.

    While metals have a high resistance and are commonly used in constructing heat exchangers due to their high thermal conductivity, as in the case of copper, titanium, and stainless-steel heat exchangers, other materials, such as graphite, ceramics, composites, or plastics, may offer greater advantages depending on the requirements of the heat transfer application.

    Read More On Linquip
    What is u-tube heat exchanger? An undeniable advantageous system

    What is Plate Heat Exchanger?

    What Are the Types of Heat Exchangers?

    Finally, after getting acquainted with the totality of heat exchangers and how they work and familiarity with the components and materials used in them, we come to the main topic of this article, which is familiarity with the types of heat exchangers.

    Types of heat exchangers - Linquip

    These machines are usually classified according to their flow arrangement and type of construction. The simplest heat exchangers are those that the hot and cold fluids flow in the same or opposite directions. These kinds of heat exchangers consist of two concentric pipes of different diameters and are parallel-flow arrangement and counter-flow arrangement.

    • Parallel-flow Arrangement: In the kind of parallel-flow heat exchangers, the hot and cold fluids enter at the same end, move in the same direction, and leave at the same end.
    • Counter-flow Arrangement: In the kind of counter-flow heat exchangers, unlike the arrangement of parallel-flow, the fluids enter at the opposite ends, move in the opposite directions, and leave at the opposite ends.

    By comparing these two types of heat exchangers, we found that more heat is transferred in a counter-flow arrangement than in a parallel flow heat exchanger. In addition, the temperature profiles of the two heat exchangers indicate two major disadvantages in the parallel-flow design:

    A huge temperature difference between the two ends causes large thermal stresses.

    The temperature of the cold fluid exiting the heat exchanger never exceeds the lowest temperature of the hot fluid.

    However, the design of a parallel-flow heat exchanger is advantageous if two fluids are required to be brought to nearly the same temperature.

    The heat transfer surface in heat exchangers can be arranged in several forms. Based on the heat transfer surface in Heat exchangers, they are therefore also categorized as Double pipe heat exchangers, Shell and tube heat exchangers, and Plate heat exchangers.

    • Double pipe heat exchangers: one of the cheapest heat exchangers in terms of design and maintenance is Double pipe heat exchanger that makes them a good option for small industries. The process of heat exchanging in these exchangers performs by one fluid flowing inside the tube and the other fluid moving on the outside. Although this kind of heat exchanger is simple and cheap in design and maintenance, their low efficiency along with their high space occupied on large scales has caused modern industries to use more efficient heat exchangers like shell and tube.
    • Shell and tube heat exchangers: this type of exchanger family with their various construction modifications is probably the most widespread and commonly used heat exchanger in the industry. Shell-and-tube heat exchangers are further categorized according to the number of shell and tube passes involved. Shell and tube heat exchangers with pressures greater than 30 bar and temperatures greater than 260 °C are typically used for high-pressure applications. The shell and tube heat exchangers thanks to their shape can withstand high pressures. This type of exchanger possesses some small bore-pipes fitted between two tube plates that the primary fluid moves through these tubes. The tube bundle is set inside a shell and the secondary fluid moves through the shell and over the surface of the tubes. This design is widely used in nuclear engineering as the steam generator. The heat exchange surface is maximized to increase the amount of heat transferred and the power generated. To maximize the surface, this design is benefited from tubes.
    • Plate heat exchangers: in this type of exchanger, metal plates are used to transfer heat between two fluids. The heat exchangers using air or gas as well as lower velocity fluid flow use this kind of arrangement. The classic example of a heat exchanger of this kind is found in an internal combustion engine in which an engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. As we compared plate heat exchanger to shell and tube exchangers, the stacked-plate arrangement typically has lower volume and cost. Another difference between the two is that plate exchangers typically serve low to medium pressure fluids, compared to medium and high pressures of shell and tub

    Types of heat exchangers - Linquip

    Read More on Linquip
    Heat Exchanger Design: How Is a Heat Exchanger Designed?

    What is Scraped Surface Heat Exchanger? Find it Where it is used


    If we want to briefly describe the applications of each of these three types of heat exchangers, we must say that double pipe heat exchangers are suitable for industrial cooling processes and Small heat transfer area requirements while sell and tube heat exchangers are used in oil refining, preheating, oil cooling processes and as steam generator, boiler in heat recovery and vapor recovery systems. On the other hand, plate heat exchangers are commonly used in food and chemical processing, and furnaces.

    Read More On Linquip
    Heat Exchanger Parts: Description of Configuration


    In this article, we tried to give you essential and comprehensive information about the types of heat exchangers. we talked about the design and construction of different types of air heat exchangers, what they do, and for what purpose they were basically designed. Besides, for better understanding, we brought some basic pieces of information about what a heat exchanger is. For each type of heat exchanger, we brought some advantages and disadvantages to make it easier for you who are about to buy one. We compared them with each other to show you their strengths and weaknesses.

    If you have any experience of using different types of heat exchangers, we will be very glad to have your opinion in the comments. By the way, if you have any questions about this topic and if you still have ambiguities about this device in your mind, you can sign up on our website and wait for our experts in Linquip to answer your questions. Hope you enjoyed reading this article.

    Anaa Lavaa
    Linquip Content Managment Team

    Recent Articles


    Leave A Reply

    Please enter your comment!
    Please enter your name here